8.1-Definición

REGRESIÓN

En estadística, el análisis de regresión es un proceso estadístico para la estimación de relaciones entre variables. Incluye muchas técnicas para el modelado y análisis de diversas variables, cuando la atención se centra en la relación entre una variable dependiente y una o más variables independientes. Más específicamente, el análisis de regresión ayuda a entender cómo el valor típico de la variable dependiente cambia cuando cualquiera de las variables independientes es variada, mientras que se mantienen las otras variables independientes fijas. Más comúnmente, el análisis de regresión estima la esperanza condicional de la variable dependiente dadas las variables independientes - es decir, el valor promedio de la variable dependiente cuando se fijan las variables independientes. Con menor frecuencia, la atención se centra en un cuantil, u otro parámetro de localización de la distribución condicional de la variable dependiente dadas las variables independientes. En todos los casos, el objetivo es la estimación de una función de las variables independientes llamada la función de regresión. En el análisis de regresión, también es de interés para caracterizar la variación de la variable dependiente en torno a la función de regresión que puede ser descrito por una distribución de probabilidad.

 

CORRELACIÓN

En probabilidad y estadística, la correlación indica la fuerza y la dirección de una relación lineal y proporcionalidad entre dos variables estadísticas. Se considera que dos variables cuantitativas están correlacionadas cuando los valores de una de ellas varían sistemáticamente con respecto a los valores homónimos de la otra: si tenemos dos variables (A y B) existe correlación si al aumentar los valores de A lo hacen también los de B y viceversa.

 

ASPECTOS A CONSIDERAR DE LA UNIDAD 8

Da Click En La Imagen Para Ver El Video (Parte I)

video 8 - parte 1

(Biblos, Calculo del Coeficiente de Correlación
(Parte I), 2011)

 

Da Click En La Imagen Para Ver El Video (Parte II)

 video 8 - parte 2

 

(Biblos, Calculo del Coeficiente de Correlación (Parte II), 2011)