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Abstract. The contribution presents the adaptive scheme of the optimal nonlinear con-
trol synthesized via inverse optimality approach to regulate the temperature of a banana
dehydration process. The necessity to apply an adaptive approach is evident when the de-
sire operation region is frequently reset, due to the system parameter changes, requiring
under this condition a new tuning of the controller gains. Then, the proposed adaptive
algorithm provides a greater ease to be implemented, estimating the system parameters
on line, and also has more robustness in contrast to an adaptive linear optimal strategy.
The obtained experimental results provide a convincing evidence of the feasibility of the
adaptive design.
Keywords: Banana dehydration process, Energy savings, Adaptive nonlinear and linear
optimal control

1. Introduction. Drying operation is an energy intensive process, representing from 10%
to 25% of energy consumption [1] in industrial processes of developed countries. Hence,
for optimal drying conditions, an optimal controller is preferred to decrease drying time
and fuel consumption [2]. Recently, some optimal [3, 4] and suboptimal [5] controllers,
regulating the air temperature of a sliced tomatoes dehydrator, have been reported. How-
ever, the optimal controllers presented in [3, 4] were synthesized via inverse optimality
approach, in which a complete and a reduced type control Lyapunov Krasovskii func-
tionals have been constructed and proposed, respectively. In the case of the complete
type functional reported in [3], it is necessary to find three positive definite matrices,
positive scalars for the Single Input-Single Output (SISO) systems, and this fact makes
difficult their implementation. Another problem is the dependence of the control design
from the plant model; the reason is that for a specific test, when the Set Point (SP) has
changed, a new mathematical model must be identified for the new operation zone. In
[4] the last fact was improved; nevertheless, the proposing of matrices, which define the
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Control Lyapunov-Krasovskii Functional (CLKF), is not an easy task in order to guar-
antee the feasibility of the Linear Matrix Inequality (LMI) problem which is a sufficient
condition to conclude that the Lyapunov-Krasovskii functional is a CLKF. Besides, in
the best knowledge of authors, the CLKF and optimal control approaches have not been
yet applied on the banana dehydration process. In fact, by the inverse optimality and
control Lyapunov-Krasovskii functionals approaches, in [3, 4] was exposed how to syn-
thesize the optimal controls which regulate the drying air temperature of the tomatoes
dehydration process; experimental results give evidence of important energy savings and
good performance when the optimal controls performances were compared to industrial
controllers. In [6] the use of a predictive optimal control to regulate the drying air tem-
perature in a tomatoes dehydration process was proposed, and experimental results were
presented. With respect to bananas, in [7] the influence of air-drying of banana slices of
experimental parameters such as temperature, relative humidity and slices thickness was
presented; however, the use of optimal control on banana dehydration process is incipient
yet. The last point is our main motivation to propose the using of optimal control in a
banana dehydration process, but, as it is exposed above, the conditions which have to
be satisfied in order to implement the nonlinear optimal control in this type of process,
could be discouraging. The reason for this, is that when the user changes the SP, a new
process model identification has to be do; furthermore, new parameters related with the
controller design have been proposed. So, in this article to overcome these difficulties, the
using of classical identification AutoRegressive eXogenous (ARX) model is proposed. In
fact, the optimal nonlinear control proposed in [3] is used here, but an online identification
mathematical model of the plant is used. Additionally, the sufficient condition to con-
clude that the complete type Lyapunov-Krasovskii functional is CLKF is verified online,
and all the scheme is implemented in a Programmable Automatic Control (PAC) MyRIO
from National Instruments with Laboratory Virtual Instrument Engineering Workbench
(LabVIEW) environment. Experimental results allow to conclude the feasibility of our
proposal. Moreover, a comparison with an optimal adaptive linear control is made and
some advantages are concluded.

Notation: C is the space of continous functions, PC ([−h, 0], R) is the space of
piecewise continuous functions defined on the segment [−h, 0], the restriction of x(t) is
xt = x(t + θ), θ ∈ [−h, 0], the standard uniform norm is ‖ϕ‖h = sup ‖ϕ(θ)‖

θ∈[−h,0]

.

The paper is organized as follows. Section 2 describes the banana dehydration process
and its mathematical model. Section 3 presents the optimal nonlinear control and its
adaptive version is presented in Section 4. The implementation details and the experi-
mental results obtained in a dehydrator process are illustrated in Section 5, and finally
some concluding comments are presented in Section 6.

2. Banana Dehydration Process. The banana atmospheric dehydration process con-
sists to pass hot air through a product until the humidity content is reduced to 15% [14].
The dehydrator platform is made of stainless steel, and it consists of a drying chamber
with the following dimensions: a box of 40 cm × 35 cm × 40 cm containing the product,
and a heating chamber (40 cm × 35 cm × 40 cm) where the electrical grid is located. The
distance between the electrical grid and the product is 25 cm; a wind tunnel as output
(diameter of 10 cm), and a pipe that recycles the hot air into the system (diameter of
10 cm and length of 80 cm), this pipe optimizes the energy using by the system, but
it induces a state delay which depends on its length. The dehydration system is also
composed by a temperature sensor LM35 with a measurement rate of 10 mV/◦C; a fan
producing a constant air flow of 2.1 m/s; an actuator, which is an electrical grid used as a
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Figure 1. Instrumentation diagram of the dehydration prototype

heat source; a PAC MyRIO, a real-time embedded board made by National Instruments;
LabVIEW software made by National Instruments for the implementation of the control
law and manages the data storage; all these hardwares are used to implement the optimal
controllers. The temperature inside the chamber is regulated by the applied voltage to the
electrical grid, which is in the range of 0-180 volts of direct current (control signal). The
instrumentation diagram of the dehydration system is shown in Figure 1. Broadly, the
process operation description is described as follows: an electric grid (the control signal is
applied on it) heats the air produced by the fan; the heated air is sent to the plate where
the banana slices are located, and where the air temperature is sensed; now, one part of
the air leaves through the wind tunnel and the other part returns to the process by the
recycling pipe. The temperature level is measured every 500 milliseconds and it is used
for the control algorithms to compute the voltage level to be applied to the actuator.

In this prototype the two control algorithms are tested: the adaptive optimal nonlinear
and the adaptive optimal linear controllers. As both strategies require the mathematical
model of the plant, the nonlinear mathematical model proposed in [5] is used and it is
briefly recalled here. Considering the first law of thermodynamics, the energy conservation
principle [8], and some assumptions (see details in [5]) about the plant, following model
can be obtained:

dT (t)

dt
= f̄0(T (t)) + f̄1(T (t − h)) + b̄(T (t))u(t) + f̄2(T (t), t), (1)

where the voltage level u(t) applied to the electrical grid is assumed to satisfy the linear

relation u(t) = k̂Q̄(t). Furthermore, the heating rate is defined by Q̄(t) and k̂ is a

proportionality constant, b̄(T (t)) =

(
1

V ρ d

dT (∂H

∂T )

)
, f̄1(T (t−h)) = ρ0F̄0(t−h)∂H0(t)

∂T
b̄(T (t)),

and

f̄0(T (t)) =

((

c̄ρ0

√
(Pa(t) − Pc(t))√

ρa

− ρF (t)

)
∂H0(t)

∂T

)

b̄(T (t)),

where T (t) is the temperature of the drying air, c̄ =
√

2CEεπd2

4
, C, E, ε are the discharge

coefficients, speed of approach, and expansion of air during the acceleration of the flow,
respectively; Pa and Pc are the pressures before and after the nozzle respectively (the
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nozzle discharged the hot air to the product), ρa is the density of the fluid before the
nozzle, H(t) is the enthalpy related with the air flow in the heater chamber (where the
electric grid is), and H0(t) is the enthalpy related with drying chamber (where the product
is), ρ0 is the air density, V is the volume air, F (t) is the volumetric flow in the heater
chamber, and F0(t) is the volumetric flow in the drying chamber. It is assumed that the
feedback flow F̄0(t−h) induces a delay in the temperature, and f̄2(T (t), t) = b̄(T (t))Te(t),
where Te(t) is the external temperature. The difficulty with the model (1) is in the
thermodynamic magnitudes, which are not generally found in a direct way, and there
are partial derivatives of enthalpy with respect to temperature, whose numeric values
are difficult to calculate. Simpler models can be obtained by means of a Taylor series
expansion around an equilibrium point and thus obtain models with a linear part and
nonlinear terms [3]:

ẋ(t) = a0x(t) + a1x(t − h) + bu(t) + g(x(t), x(t − h)), (2)

where a0, a1, b ∈ R are the parameters to be determined, h > 0 is the time delay, the
state x(t) is the temperature T (t), the control input u(t) is the voltage applied to the
electrical grid, and according to [9], the nonlinear dynamic of g(·, ·) can be described by
a polynomial function

g(x(t), x(t − h)) = γ0x
2(t) + γ1x

2(t − h) + γ2x
3(t) + γ3x

3(t − h) (3)

For the tomatoes case [3], the model (2), was identified off-line and the nonlinear op-
timal controller is synthesized with the identified parameters. However, when the SP
changes, the operation temperature Top is different and consequently the mathematical
model around this new operating point changes. This change means that the controller
gains have to be recalculated. This is a motivation to implement an adaptive control,
which requires the online model parameters identification.

3. Optimal Nonlinear Control. The linear part of the system given by (2): ẋ(t) =
a0x(t) + a1x(t − h) is assumed to be stable; further, it is associated with a complete
type Lyapunov Krasovskii functional with prescribed derivative [11]. In [3] the complete
type Lyapunov Krasovskii, Control Lyapunov-Krasoskii Functional (CLKF) and inverse
optimality approaches are combined in order to obtain a nonlinear optimal control to
the models (2) and (3). Additionally, sufficient conditions were given to conclude that
a complete type Lyapunov Krasosvkii functional is a CLKF. Here below, these concepts
are briefly recalled.

3.1. Lyapunov-Krasovskii functionals of complete type. Consider the open loop
linear part of the system (2) defined as follows

ẋ(t) = a0x(t) + a1x(t − h), t ≥ 0, (4)

where h > 0 is the known delay, and a0, a1 are real numbers. Let ϕ : [−h, 0] → R be
an initial function, ϕ ∈ PC ([−h, 0], R), then x(θ) = ϕ(θ), θ ∈ [−h, 0]. The idea of the
complete type functional approach could be summarized as follows: given a stable linear
time delay system and a positive definite functional w(xt), the complete type functional
has time derivative along the trajectories of system (4) equal to −w(xt) and the functional
has lower and upper quadratic bounds [11]. Following theorem gives explicitly the form
of the complete type functional V : PC ([−h, 0], R) → R for the scalar case.

Theorem 3.1. [11] Given three real numbers Wj, j = 0, 1, 2, let us define the functional

w(ϕ) = ϕ2(0)W0 + ϕ2(−h)W1 +

∫ 0

−h

ϕ2(θ)dθW2.
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If there exists a function U(τ) associated with W = W0 + W1 + hW2, the functional

V (ϕ) = ϕ2(0)U(0) + 2a1ϕ(0)

∫ 0

−h

U(−h − θ)ϕ(θ)dθ

+

∫ 0

−h

ϕ2(θ) [W1 + (h + θ) W2] dθ

+ a2
1

∫ 0

−h

ϕ(θ1)

[∫ 0

−h

U(θ1 − θ2)ϕ(θ2)dθ2

]
dθ1, (5)

has time derivative along the solutions of system (4) given by dV (xt)
dt

= −w(xt), t ≥ 0.

Here U(τ), the Lyapunov matrix of system (4) associated to W = W0+W1+hW2 is the
unique solution of the symmetry, dynamic, and algebraic properties [11], and functional
(5) has lower and upper bound

α1 ‖ϕ(0)‖2 ≤ V (ϕ) ≤ α2 ‖ϕ‖2
h , ϕ ∈ PC ([−h, 0], R) , α1, α2 > 0.

3.2. Control Lyapunov-Krasovskii functionals. In order to use the CLKF approach,
consider the time delay system (2), it can be rewritten as an affine system in the control
input as follows

ẋ(t) = f0(xt) + bu(t), (6)

where

f0(xt) = a0x(t) + a1x(t − h) + g(x(t), x(t − h)), (7)

Here, the system has zero solution when u ≡ 0. The control u ∈ R is a piece wise
continuous of the state function and the initial condition is given by a continuous vector
valued function x0 = ϕ, ϕ : [−h, 0] → R. The idea is to consider a CLKF as a Bellman
functional and the dynamic programming approach with a specific performance index to
satisfy the Hamilton-Jacobi-Bellman (HJB) type equation without solving it. The time
derivative of the functional (5) along the trajectories of system (6) is given by

dV (xt)

dt

∣∣∣∣
(6−7)

= Ψ0(xt) + Ψ1(xt)u(t),

where

Ψ0(xt) = −x2(t)W0 − x2(t − h)W1 −
∫ 0

−h

x2(t + θ)dθW2 + 2ω1(xt)g(x(t), x(t − h)), (8)

and

Ψ1(xt) = 2b

(
U(0)x(t) + a1

∫ 0

−h

U(−h − θ)x(t + θ)dθ

)
, (9)

are both scalar functionals. If the functional Ψ1(xt) 6= 0 for all xt 6= 0, a nonlinear control
law can be applied, when the functional Ψ1(xt) = 0 but xt 6= 0, the sufficient condition
that guarantees that the system (6) is asymptotically stable and consequently to conclude
that the complete Lyapunov functional (5) is a CLKF, is that the term Ψ0(xt) is negative.
This sufficient condition (recalled here for the scalar case) is established in the following
proposition.

Proposition 3.1. [3] Let the nonlinear time delay system (6) and let positive numbers
Wj ∈ R, for j = 0, 1, 2, and W = W0 + W1 + hW2 be given. If there exists a scalar ǫ > 0
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such that the matrix

E =





W0 − ǫᾱ 0 0 −U(0)
0 W1 − ǫβ̄ 0 0

0 0
1

h

W2

s̄2
−1

−U(0) 0 −1 ǫ




> 0. (10)

then the complete type functional V (xt) given by (5) is a control Lyapunov-Krasovskii
functional for systems (6) and (7).

Remark 3.1. [3] The numerical values for Wi, for i = 0, 1, 2, and ǫ could be found by
considering (10) as an LMI, under the restriction W = W0 + W1 + hW2. However, in
practice these numerical values could introduce a stable behavior in the plant, but without
adequate performance in closed loop. This problem may be solved, by introducing an
adaptive scheme in the control loop.

3.3. Optimal nonlinear control law via inverse optimality approach. Consider
the following performance index

J =

∫ ∞

0

[
q(xt) + r(xt)u

2
]
dt, (11)

where q(xt) and r(xt) are strictly positive definite [3] and these depend on the time
derivative of V (xt); therefore, they are well defined by

q(xt) =
[
Ψ1(xt)

2
]
+

√
[Ψ0(xt)]

2 + Ψ4
1(xt),

r(xt) =
1
4
[Ψ2

1(xt)]

Ψ2
1(xt) + Ψ0(xt) +

√
[Ψ0(xt)]

2 + Ψ4
1(xt)

,

with Ψ0(xt) and Ψ1(xt) given by Equations (8) and (9) respectively. If Proposition 3.1 is
satisfied, then the inverse optimality approach can be used to obtain an optimal control
for system (6), which is presented below.

Proposition 3.2. [3] Suppose that the functional V (xt) given by (5) satisfies the condition
established in Proposition 3.1, then the optimal control law

u∗(t) =





−1

2

Ψ1 (x∗
t )

r (x∗
t )

, Ψ1 (x∗
t ) 6= 0

0, Ψ1(x
∗
t ) = 0, or x∗

t = 0
, (12)

stabilizes system (6), in the local sense, and minimizes the performance index (11).

Remark 3.2. [3] The control law given by (12) is continuous in x∗
t = 0. In fact, [3]

proved that the complete type functional V (x∗
t ) satisfies the small control property [12],

and it follows that u∗ is continuous at x∗
t = 0.

4. Adaptive Optimal Nonlinear Control Scheme. As it was previously mentioned
in Remark 3.1, the numerical values of the control gains Wi, (with i = 0, 1, 2), could be
found by satisfying the condition (10); however, the obtained values by this way could be
inadequate to the plant response performance, producing either saturation in the actuator
or small values that not are useful. This is one of reasons to propose an adaptive scheme.

Additionally, when the set point is reset, the operation region changes, together with the
parameters of the mathematical model. In order to obtain good results, in [3] a new model
was computed for every operation point; however, the numerical values for the positive
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numbers Wi, (with i = 0, 1, 2), must be found for every model to satisfy the sufficient
condition given by Proposition 3.1 and to obtain a good performance in the experimental
test. Those facts show the necessity of an adaptive scheme to estimate the mathematical
model parameters for every requested operation region and to recalculate the controller
gains, doing the application of the optimal nonlinear control to the dehydration process
easier.

This section provides details about the development and the implementation of an adap-
tive scheme, by using inverse optimality approach and identification techniques, which
solve the problem to modify the positive scalars Wi, (with i = 0, 1, 2) for different opera-
tion points.

Systems (2) and (3) are discretized by the Euler forward method [10] as follows:

xk+1 = α0xk + α1xk−h̄ + βuk + γ̄0x
2
k + γ̄1x

2
k−h̄ + γ̄2x

3
k + γ̄3x

3
k−h̄, (13)

where coefficients are α0 = 1 + Tsa0, α1 = Tsa1, β = Tsb, γ̄0 = Tsγ0, γ̄1 = Tsγ1, γ̄2 =
Tsγ2, and γ̄3 = Tsγ3, with k defining the sampling instant time and Ts is the sampling
period. Furthermore, the equivalent instant to the delay is defined by h̄ = h

Ts
. With these

equivalences, it is possible to obtain an estimate of the parameters of the continuous model
given by (2), verifying that the linear part of the system is stable, and then to calculate
the optimal control with the estimated plant parameters if the sufficient condition given
by Proposition 3.1 is verified. The following procedure describes the proposed algorithm
of the adaptive control scheme:

Algorithm 1. Adaptive optimal nonlinear control

1) Parameter identification of the discrete model (13) by means of the least square recur-
sive method [9], in which it is possible to take into account the state delay h induced
by the recycling pipe. In order to excite the modes of the system, a noised electrical
signal represented by a unit step function (the noise added to the signal guarantees
the signal persistence) is applied to the actuator; therefore, the step response of the
plant is plotted, it means, the required input/output measured vectors for the recur-
sive method are obtained. Then, the regression vector containing the input/output
measured variables is given by

x̄T =
[

x
(
k̄
)
, x

(
k̄ − h̄

)
, u

(
k̄
)
, x2

(
k̄
)
, x2

(
k̄ − h̄

)
, x3

(
k̄
)
, x3

(
k̄ − h̄

) ]
,

k̄ = k − 1,

and the vector of the unknown parameters is defined by

θ̄T =
[

α0, α1, β, γ̄0, γ̄1, γ̄2, γ̄3

]
.

The initial parameters vector is settled with zero value. Then, when the parameters
are obtained for the first time, the estimation error is computed, and this is the initial
estimation error, denoted by e0.

2) Computation of the parameters of the continuous time model (2) as:

a0 =
α0 − 1

Ts

, a1 =
α1

Ts

, b =
β

Ts

, γ0 =
γ̄0

Ts

, γ1 =
γ̄1

Ts

, γ2 =
γ̄2

Ts

, γ3 =
γ̄3

Ts

.

3) Verify the stability of the linear part of model (2) (determined by the parameters a0

and a1) by the D-partitions method [13] in the continuous domain.
4) The gains of the controller (the positive numbers Wi, i = 0, 1, 2) are initialized such

that the matrix (10) is definite positive, subject to W = W0 + W1 + hW2, and ǫ, ᾱ,
β̄ > 0 are given. As the value of W was previously fixed, it is possible to compute the
Lyapunov matrix U(0) by using its properties. If the matrix (10) is definite positive,
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then the complete type functional V (xt), given by (5), is a CLKF for system (2) and
the optimal control law u∗(t) is calculated to be applied to the plant.

5) The parameters of system (2) are estimated in the next step, and the stability of the
linear part is verified again. Additionally, the estimation error is computed, and it is
denoted by ec. If the current estimation error ec satisfies ec < e0, and the functional
V (xt) given by (5) is a CLKF for system (2), then the optimal controller u∗(t) is
recalculated with the new parameters and applied to the plant; if not, a new parameters
identification is computed.

6) In each step, it is verified if the error between the Set Point (SP) and the Process Vari-
able (PV) satisfies the criteria of ±1%. If it happens, these are the “best” parameters,
and the controller gains are calculated with them for the remain time; if the PV leaves
this region, another parameters identification is obtained in order to recalculated the
optimal controller.

7) Finally, a stop condition is previously defined: the human user can stop the process at
any time or when the product reaches 15% of humidity.

Figure 2 shows a flow diagram of the adaptive algorithm.
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Figure 2. Flow diagram of the adaptive scheme
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In the next section the experimental results are presented, and two controllers are
considered to regulate the dehydration air temperature, it means, the nonlinear adaptive
control and an adaptive Linear Quadratic Regulator by using a linear model.

5. Experimental Results. The bananas (Musa balbisiana) were sliced in portions each
one with weight of 5 mg approximately; those bananas were chosen with more or less
same degree of ripeness, same size and weight. The slices thickness was 5 mm [14] and its
diameter was 3 cm. According with the specialized literature [7] three temperatures for
the dehydration air was chosen: 45◦C, 50◦C and 60◦C. In order to compare the nonlinear
adaptive control performance applied to controlling the air dehydration temperature,
an adaptive linear optimal control is programmed. This optimal control is recalculated
according with an online parameters identification with fixed pair Q and R of the quadratic
performance. In this case, the considered linear model is given by:

xk+1 = ax(k) + bu(k − τ̄) + c, (14)

where the parameters a, b, and c (Offset) are identified on line and τ̄ is identified off-line by
using step response method. For the optimal linear control design, the delay is neglected
(the constant time is much greater than the delay); however, for each identified pair a, b,
the characteristic equation is calculated and its stability is verified in the discrete domain.
With respect to the nonlinear adaptive control, the values Wi, i = 0, 1, 2, are settled to
1. The initial parameters for the nonlinear model (13) were adjusted in an arbitrary way,
but satisfying the condition (10).

Remark 5.1. A comparison with an optimal linear control is made, due to the fact that
intuitively one can think that the process has a linear behaviour and consequently adaptive
linear control is sufficient to regulate it. As it is showed below, it is not true, due to the
fact that un-modeled dynamics are latent in the process around some specific operation
zone.

Remark 5.2. Unlike previous results (please see [3]), where the parameters Wi, i = 0, 1, 2
have been adjusted every time that the numerical value of the set point changes, in this
work, the same numerical values for Wi are used even if the SP is resettled. The reason
for this, is that the plant parameters are identified on line. So, the application of the
control law given by (12) is better adapted to this SP variation, easier to be implemented
and its performance could be improved as it is exposed here below.

It is important to emphasize that the dryer door is opened every approximately 15
minutes, in order to weigh the product to determine the lost humidity. The indirect
humidity measurement is made with the following relation:

H = 83% − Pi − Pf

Pi

× 100,

where H is the relative humidity, Pi is the initial weight of the product, Pf is the final
weight of the product. The 83% value was obtained from the product with a direct
measurement using a humidity sensor HNZ 433A1. It is clear that the measurement given
by this sensor is affected by the environmental humidity, and this humidity present inside
of the dryer chamber may affect the humidity measurements of the product. So it is
preferred indirect method to weigh the product. According with [14] the objective is to
reach 15% of humidity in the product, and then the experiment is finalized when this
value is reached in all the slices. Figure 3 shows the loss of humidity in the dried product
when the nonlinear and linear adaptive controllers are applied and the set point is set at
45◦C.
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Figure 3. (color online) Relative humidity of the sliced banana when the
nonlinear adaptive control (NLAC) and linear adaptive control (LAC) are
applied (SP adjusted to 45◦C)
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Figure 4. Temperature response and control signal with SP adjusted to
45◦C using both controllers

More uniform dried products can be observed when the nonlinear adaptive control
is used, because less oscillations are present in the temperature, which is shown in the
following figures. Figure 4 shows the temperature response and the control signal. The
initial condition was 25.58◦C.

A better performance is observed when the nonlinear adaptive control is applied, and
it is compared to the adaptive optimal linear control strategy. This fact can be explained
because a nonlinear model is a better approximation to the real plant than a linear
model. Notice that a stationary error is presented when the optimal linear control is
used, although the offset is calculated with the estimated parameters and the set point,
the estimation error does not allow to reduce this stationary error in the temperature.
Figure 5 shows the estimation error for both controllers.

Table 1 shows the last values where the parameters of the nonlinear model converged,
and the estimation error is presented, too.
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Figure 5. Estimation error for both controllers with SP equal to 45◦C

Table 1. Last values for the estimated parameters for the nonlinear model
when an SP equal to 45◦C is considered

α0 α1 β γ̄0 γ̄1 γ̄2 γ̄3 ê

−1.491172 0.194809 0.002448 1.000382 0.006035 −1.131864 −0.451128 0.005852

(a) Before (b) After

Figure 6. Sliced banana before and after the dehydration process

Furthermore, Figures 6(a) and 6(b) show the sliced banana appearance before and after
of the dehydration when the nonlinear adaptive control is applied.

Next, the experimental results when the SP is adjusted to 50◦C, are presented. Figure
7 shows the lost humidity by the dried product when both controllers are applied.

Similar drying results are obtained (because the dryer temperature level is higher than
that in previous case) when both controllers have been applied; however, as it can be
depicted in Figure 8, the performance of the closed loop plant is better when the Nonlinear
Adaptive Control (NLAC) is used. The initial condition was at 25.56◦C.
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Figure 7. (color online) Relative humidity of the sliced banana when the
NLAC and LAC are applied (SP equal to 50◦C)

0 1000 2000 3000 4000 5000 6000 7000 8100
20

30

40

50

60

Time (seconds)

T
em

pe
ra

tu
re

 (
°C

)

 

 

Linear control
Nonlinear control

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

Time (seconds)

C
on

tr
ol

 s
ig

na
ls

 (
V

ol
ts

)

 

 

Nonlinear control
Linear control

Figure 8. Temperature response and control signal with SP adjusted to
50◦C using the nonlinear adaptive control
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Figure 9. Estimation error with SP equal to 50◦C
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Again, a better performance is presented by using the nonlinear adaptive control when
it is compared with the Linear Adaptive Control (LAC) and as it is shown in Figure 9
the estimation error decreases when the nonlinear model is used.

Table 2 shows the last values where the parameters of the nonlinear model converged
and the last calculated estimation error of the process.

Finally, the set point was adjusted to 60◦C, and the results are shown below. Figure
10 displays the humidity loss of the dried product when both controllers are applied.

A similar drying performance is obtained, in comparison with the above described
experiments. From Figure 11, one can observe that better closed loop performance is

Table 2. Last values for the estimated parameters for the nonlinear model
when an SP equals 50◦C

α0 α1 β γ̄0 γ̄1 γ̄2 γ̄3 ê

−1.380890 0.070492 0.004692 1.005500 0.006911 −1.201833 −0.451582 0.000326

Figure 10. (color online) Relative humidity of the sliced banana when the
NLAC and LAC are applied (SP equal to 60◦C)
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Figure 11. Temperature response and control signal with SP adjusted to
60◦C using the nonlinear adaptive control
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Figure 12. Estimation error with SP equal to 60◦C

Table 3. Last values for the estimated parameters for the nonlinear model
when an SP equals 60◦C

α0 α1 β γ̄0 γ̄1 γ̄2 γ̄3 ê

−1.215887 −0.184449 0.003926 0.980612 6.909382E-5 −1.340971 −0.452655 0.004238

Table 4. Lightness loss of the product using NLAC and LAC

Controller Lightness loss (%)
NLAC 45◦C 10.55
NLAC 50◦C 8.07
NLAC 60◦C 4.6
LAC 45◦C 19.46
LAC 50◦C 17.9
LAC 60◦C 5.3

obtained when the nonlinear adaptive control strategy is applied, with respect to adaptive
optimal linear control scheme. In this experiment the initial condition was at 25.50◦C.

As Figure 12 shows, once again the estimation error is smaller when the adaptive
nonlinear control is applied, in contrast with the closed loop system involving the adaptive
optimal linear control.

In Table 3 the final values of both, the parameters of the nonlinear model and the
estimation error are shown.

The rates of lightness are measurements by a Hunter Lab colorimeter in the CIE L*a*b
parameters, and this color measurement gives the rate of product darkening. Table 4
shows the mean of the lightness loss in the dried product when the parameter L is used
to determine it.

In all the considered set points, the nonlinear controller produces a smaller product
lightness loss than the linear controller; it is due to the stationary error and the poor
performance in the drying temperature air, when the optimal linear control is used.

5.1. Energy consumption and performance in the control loop. In this section
the performance and the energy consumption of both adaptive controllers (nonlinear and
linear strategies) are analyzed. On the one hand, the performance of the closed loop
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Table 5. Comparison of energy consumption of the NLAC and LAC

Set Point
Energy

consumption – LAC (Wh)
Energy

consumption – NLAC (Wh)
45◦C 60.24 57.09
50◦C 74.15 70.28
60◦C 228.12 98.80

Table 6. Comparative table of the numerical values for the IAE using the
NLAC and LAC

Set Point IAE-LAC IAE-NLAC
45◦C 12, 776.13 4, 528.62
50◦C 13, 709.44 3, 663.73
60◦C 25, 356 3, 643.92

system is measured by using the Integral Absolute Error (IAE) criterion. While the
energy consumption is computed with the instantaneous power rate by a period time.
Table 5 shows the energy consumption by the closed loop plant for each one of controller.

Although both controllers are optimal in different senses, only when the SP is set at
70◦C, an important energy saving is observed when the adaptive nonlinear controller is
used, instead of the adaptive linear control: 56.6% of energy savings. Moreover, with
respect to the performance of the closed loop plant, Table 6 displays the numerical values
of the performance index IAE. It is clear that some advantages can be obtained if a non-
linear model and an adaptive optimal control are used to regulate the dehydration air of
the process, among which are energy savings, smaller lightness loss and good performance
of the closed loop plant.

The advantages of the adaptive approach are listed below.

1) The plant parameters estimation is carried out on line, reducing the required time
to the identification of the process in contrast to the off line procedure.

2) The change of the parameter values, due to the initial condition affected and related
by the external environment temperature and humidity, is taken into account with
the recursive method in every step, and hence the performance of the plant response
is improved.

3) The controller gains are initialized with a fixed value; however, during the process,
they can be updated in function of the error in the process variable, while in [3],
they are set only one time.

6. Conclusions. In the present article an adaptive optimal nonlinear control is experi-
mentally tested and acceptable results are obtained. Although some previous results have
been recently presented [3, 4], using the inverse optimality approach, they have some dif-
ficulties which should be mentioned: some parameters (parameters plant and additional
parameters which guarantee the stability of closed loop plant) have to be adjusted for each
SP. With the adaptive scheme presented in this work, this problem is solved and another
application is also considered in this paper: sliced bananas dehydration process. When
the optimal adaptive nonlinear control performance is compared with the performance
given by an optimal adaptive linear control, some advantages can be highlighted, which
are smaller lightness loss in the product and energy savings in the process. Future works
includes nutrients loss analysis for the dried bananas when some specific controllers are
applied to regulating the dehydration air temperature.
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